

Composing and performing with
switches, using specialised or
adapted music software

Presented At The International Conference on Assistive Technology, Derby April 2002

DR. TIM ANDERSON
R&D Manager, Drake Music Project www.DrakeMusicProject.com

Creative people with disabilities who use switch control have particular
problems using music software to compose and arrange music. Two
complementary approaches to these difficulties are examined:

Specialist music software designed for switch use, such as the Drake
Music Project's 'E–Scape', can provide high-level guided operation
which can greatly aid switch users. Presentation of choices, as well as
guidance and feedback through processes can enable beginners to
computers and/or music to get experience and motivation at an early
stage. Some of these features are illustrated via some simple
composing tasks.

Another approach is to use standard music software alongside 'overlay'
emulation software such as 'Hands Off', which presents grids of cells
which can be selected by a switch user to operate keyboard and mouse
functions on the computer. However, a variety of problems are still
encountered when operating music software, which can disbar very
many switch users. At the moment, a few switch users may be able to
progress to operating more advanced industry standard music software
via overlays, while the vast majority have to remain with a specialist
music system built around the expectation of switch use.

To investigate the possibilities of providing higher-level, more guided
operation of standard software for composing music, overlay grids were
developed to undertake some simple musical tasks. However, a variety
of difficulties were still encountered, which has led to a number of ideas
for enhanced functionality for overlay systems. These would enable
user interfaces which behave more like specialist systems to be
constructed, and enable switch users to control any standard music
software more effectively. Further work is planned in conjunction with
Sensory Software to expand the possibilities for high-level overlay
control of music software.

There is, however, still a continuing need for specialist software to
enable a switch user to effectively perform music live.

INTRODUCTION
As anyone who does it can tell you, making music - whether it be composing or
performing - can be incredibly fulfilling, satisfying and life enhancing. This is especially
so for people with disabilities, who often have a narrower range of opportunities for

creative expression. In the Drake Music Project, one of the key aims is to enable
people's musical creativity; this includes the provision of suitable systems as well as
tuition and music making opportunities. The focus of this paper is on providing systems
for music making for people whose physical disabilities are more profound - for
example someone who can’t use a trackball or other mouse control, or use a computer
or music keyboard. This usually implies switch operation, and this paper explores the
issues and possible options for switch users in operating music software effectively.

USING MUSIC SOFTWARE VIA SWITCHES
People with such disabilities will have little of no experience of 'playing about' with
musical instruments, and will have had no opportunity (or ability) to have done even
simple rhythmic activities such as clapping along to a tune, which a primary school
child will often experience. Singing is another activity which can enable many children
to acquire ability and interest in music, and again many disabled people will not have
had this experience. However, they may have a deep love of music at a listening level,
plus - for some - musical ideas which have no outlet.
As in many areas, over the past 20 years or so computers have hugely enabled people
in making music, and there is now a vast array of very capable software, enabling
people to create and arrange music in any style, print out high quality scores, and play
back their music with excellent fidelity and range of instrumentation.
The main way a switch user can operate such software is to use secondary 'overlay'
software, such as 'Ke:nx' (Don Johnston) for Mac, or 'Hands Off' (Sensory Software)
for PC. These consist of grids of cells which appear on top of ('overlay') an application
they are controlling. Rows and columns can be scanned by switches, and when a cell
is selected it can communicate with the underlying application and effectively perform
any mouse or keyboard action, although only low-level mouse operations tend to be
provided such as moving, holding down a button etc. A cell can contain sequences of
commands ('macros') which can control more complex operations, such as opening a
dialog, selecting a certain value via a radio button, toggling a second parameter via a
push button, then closing the dialog. The user can also jump to other grids with
different sets of commands suitable for different situations.
However, powerful and sophisticated music software comes at the price of complexity
of operation, and is heavily geared around extensive fine control of the mouse cursor,
as well as a large number of repetitive operations, choices and changes of mode.
Examples are the large number of palettes of music symbols; the many editing
windows, with large variation in display properties and scale; the large number of
parameters for each note; the variation in organisational hierarchy and grouping; the
time scale, looping and audition points; the many status and value dialogs or displays,
and overall the large number of mouse dragging actions demanded to set values and
manipulate graphic objects. In addition, it is usually also geared around the expectation
of using MIDI musical instruments to input notes or record live playing, rather than
entering individual notes by specifying position, pitch and duration as a switch user
needs to do.
All this adds up to making operation of music software arguably far more demanding
and intensive than most office software, and gives switch users even greater problems.
Using switches to operate an overlay menu system which then operates mouse
movements or key presses to control music software is very labour intensive and long-
winded, as will be demonstrated. This complexity and laboriousness, combined with
people's lack of experience in music making, can all conspire to discourage people at
an early stage.

COMPARING OPERATION VIA OVERLAY VS. DEDICATED SWITCH
SOFTWARE
We will now explore the possibilities of using overlays to control music software in a
less laborious way. We will first illustrate some of the guidance, feedback and ease of
use features provided within 'E-Scape' - specialist music software initially developed by
the Drake Music Project to provide composing facilities for switch users (although its
range of usage has considerably broadened since the outset). Such features have

been found to greatly reduce the workload on switch users, and enable them to focus
on creative ideas rather than get bogged down in low-level and often long-winded
computer operation.
To do this, we first describe how some simple musical tasks can be carried out in E-
Scape: (A) entering two groups of 4 notes, with two different lengths; (B) auditioning
the result; (C) selecting four of the notes, and (D) transposing (changing their pitches).
We then compare how the same simple operations can be carried out using an overlay
with standard music software, by developing a series of dedicated grids for the 'Hands
Off' overlay, with the aim of giving a user the same kind of high-level control provided
by E-Scape. These grids are designed to present the user with context sensitive
choices - ie only those which are meaningful and sensible at the time, with easy to
understand text, and far less need to understand the detailed operational control of the
music software.
This goes beyond the more basic usage of overlays, where actions are triggered which
press keys and move the mouse, and where the user not only needs to remember
which shortcuts do what, but also in which context.

EXAMPLE MUSIC ACTIVITY USING SPECIALIST 'E-SCAPE'
SOFTWARE
Because it is designed from the outset for switch operation, E-Scape can provide the
common musical operations involved in entering, editing and arranging music in a
guided manner. Users can choose a 'level' to operate at - lower levels have more
guidance, with musical activities built from simpler actions which appear to the user as
a series of questions.
This enables people - after little or no training - to focus on musical choices rather than
issues of how to operate the system, and even a beginner (q.v.) can quickly be left
alone to work unaided. A user can also decide to work at a higher 'user level', where
operations are more open-ended, more choices are provided and more advanced
language used.

(A) entering some notes with two different lengths; (B) auditioning the result
1. Press switch to open the main menu (NB. shown here after notes have been
added):

Fig. 1 E-Scape window with main menu

2. Then select [Add a note] (with default length of 1 beat). This brings up a menu with
notes:

Fig. 2 E-Scape menu to select the pitch of a note to be added

Each note plays itself from the menu. In addition, if the user dwells on a note in the
menu, it will automatically audition - ie play along with any surrounding notes - to
illustrate what the track would sound like if this note were added.

3. Select a note to add, then repeat to add 3 further notes of 1 beat.

4. Select [Choose length of note] from the main menu, to open the duration menu:

Fig. 3 E-Scape menu to select the length of note to be added

5. Select [1/2 beat]. Each item again plays itself, as a sample 2 bar rhythm, with notes
of the selected length to illustrate audibly how long it is.
6. Repeat 1,2,3 above, to add four notes of this length.

(C) selecting four of the notes

1. First, select [Edit] from the main menu, to open the Edit menu:

Fig. 4 E-Scape 'Edit' menu

2. Then select [Choose notes to edit], which then guides the user through the process
(fig 6, a - e) of selecting a block of notes:

a. b.

c. d.

e. f.
Fig. 5 Six stages of the E-Scape guided procedure to select notes for editing

After b & d, each switch-press highlights the next note to show it is selected, and also
plays it.
Finally a variation of the Edit menu (f) appears again which prompts the user for what
they want to do with the notes.

(D) transposing notes
1. From this Edit menu (f), select [Make Notes higher], and another guided procedure
is launched. First some instructions are shown:

Fig. 6 Instructions for transposing up

2. Each subsequent switch press then transposes the notes up one, but if the user
waits (does nothing) for a moment, the changed notes automatically audition - first
playing once alone, then playing in context with surrounding notes in the track (and
also, then with any other tracks). This happens in E-Scape in any editing operation,
and has been found to be very helpful to disabled users - greatly reducing the amount
of switching, and distraction from the musical task.

Fig. 7 Leon Hippolyte (two switches) and Baz Wright (single switch) composing using

'E-Scape' software

EXAMPLE MUSIC ACTIVITY USING OVERLAY WITH STANDARD
SOFTWARE
We now show how the same musical operations can be carried out using the standard
'Cakewalk Pro Audio v8' music software, controlled by the 'Hands Off' overlay with
dedicated grids. Cakewalk has a relatively good spread of keyboard shortcuts and
controls, which gives Hands Off a reasonable task, whereas initial attempts to operate
'Cubasis' and 'Rebirth' music software had to be abandoned due to the large number of
options only available via mouse control.
First, some nomenclature is needed to clarify description. Each Hands Off 'Grid',
contain 'cells' which are named here within [square brackets]. When a [cell] is
'selected' (using scanning menus etc) it can effectively "type" a key such as <Return>
which may have the effect (as a keyboard shortcut) of "pressing" a graphic 'button'
(named with inverted commas) within a dialog on screen. A [cell] can also initiate a
"jump" to another Grid.

(A) entering some notes with two different lengths
When Cakewalk is launched, the top-level Hands Off grid for Cakewalk appears - here
at bottom left. (NB. Cakewalk shown here with the edit window open, and after notes
have been added):

Fig. 8 Cakewalk edit window, with Hands Off top-level grid

1. Press switch to start scanning the grid…
2. Select [Open editor] to open an edit ('Piano Roll') window - as shown in fig. 8.
3. Select [Enter notes] which opens a 'Step Record' window, and jumps to another
Grid:

Fig. 9 Cakewalk 'Step Record' window, with associated Hands Off grid

Note how the Grid shape has been designed to avoid obscuring the window, which
Cakewalk will not allow to be moved. A number of complex problems were
encountered in this window - see Appendix 1.1 for details.

4. Select [Open keyboard], leaving the duration set at default crotchet (= '1 beat' at
4/4). NB. Cakewalk displays the US 'Quarter note'. This opens a graphical 'Keyboard'
window, and jumps to another Grid of notes [C], [D] etc:

Fig. 10 Entering notes from the Hands Off grid (bottom), using Cakewalk's on screen

piano keyboard

5. Select [C], [C], [G], [G] in turn to enter 4 notes.
6. Then select [Change note length]. This closes the 'Keyboard' window, and returns to
the 'Step Record' window, also jumping back to the previous Grid (as 3 above).
Another subtle and difficult problem arises in doing this, due to the fact that user
actions in the Keyboard window can change the effect of subsequent key presses in
the Step Record window - and the overlay has no way of knowing this. See Appendix
1.2 for details.
7. In the Step Record grid (as 3 above), select [Duration: 1/2 beat],
8. Then select [Open Keyboard] to reopen the Keyboard window (as 4 above).
9. In the keyboard grid, select four note cells in turn (as 5 above) to add four more
notes with this new duration.
10. Then select [FINISH entry of notes - and keep]. This closes both the Keyboard and
Step Entry windows to reveal the Editor window with the notes in place, and also
jumps back the the main Cakewalk Grid (as shown in fig. 8).

(B) Auditioning the resulting notes
1. From the main grid select [Play from start] or [Play].
NB. If there were a large number of notes already entered, the user would need to
select [Locate cursor / Play] which jumps to another Grid where they can move to, then
play from, a particular cursor position rather than the start.

(C) Selecting four of the notes
This is not straightforward, as the only way - without using low-level mouse operation -
is by specifying a start and end time within which notes will be selected. Due to
Cakewalk's idiosyncrasies, even this has been a challenge to make work (see
Appendix 1.3) and it is also still not possible to select individual notes within a chord,
for example.

1. From the main grid, select [EDIT notes], then [Select notes].
This opens a 'Select by time' dialog, with the 'From' field active, and jumps to another
Grid where times can be entered, or changed via the [Decrease..] or [Increase..] cells:

Fig. 11 Using Cakewalk's 'Select by Time' dialog to select notes, with a Hands Off grid to

specify a 'from' time

2. Specify a 'from' time by selecting [Increase start time (repeat)], and pressing switch
repeatedly.
3. Then select the [TO..] cell. This changes the focus in the dialog to the 'To' ("Thru")
field, and also jumps to a second Grid where the user can select an 'end time' for
selected notes:

Fig. 12 The second field of the Cakewalk dialog now made active - with a second Grid to

select a 'To' time

4. Select a 'Thru' time (ie the 'end' time for events to be selected) - which the user has
to make sure is higher than the 'From' time.
5. Select [FINISH Selection]. This closes the dialog, leaving the desired notes
(between the two times) selected; it then jumps back to the 'EDIT' Grid:

Fig. 13 Cakewalk edit window and associated Hands Off 'edit' grid, with 4 notes now

selected

(D) transposing (changing note pitches) and audition

1. Select [Transpose up], or [Repeat transpose] etc.
2. Select [AUDITION selected notes] to play the selected notes, or [Play..] etc to play
all the notes. However, this does not really 'audition' in the sense of playing the
selected notes along with others nearby.

PROBLEMS USING OVERLAYS FOR HIGH-LEVEL CONTROL OF
APPLICATIONS
It is not necessary to follow the necessarily detailed examples given to get an
impression of the operational difficulties involved in controlling even simple musical
procedures via overlays. Various specific problems were encountered - detailed in
Appendix 1 - which are difficult to present in a brief demonstration, but two key general
points can be made:
1. One factor is that the application needs to be 'friendly' to overlay control. This is not
just a matter of having plenty of keyboard shortcuts for example, although interestingly,
even the recent version (v8) of the PC music application used here (which grew out of
DOS) still has several vital functions for which there is no keyboard control. Another
aspect is of applications having various 'annoying habits' as regards co-operating with
an overlay, for example, the 'aberrant behaviour' of dialogs when values are entered
via the overlay (c.f. typed in manually). This is usually caused by the programmer of
the application using 'unofficial' shortcuts to achieve subtle effects (such as not
allowing certain inputs to be typed into a dialog), and not using the standard controls to
process Windows messages in the conventional way. The effect is to make the life of
any overlay system very difficult, and using it can become a game of finding 'work-
arounds', or lengthy 'fiddles' to achieve control, again illustrated in Appendix 1.
2. Another more fundamental problem is that overlay systems are inherently 'blind' to
the context and state (and indeed presence) of the application they are controlling, and

the music application can not communicate information back to them - eg of where it is
in a score, and what state or edit mode it is in. Only if a standard protocol could be
agreed for inter-application communication could this issue begin to be addressed.
Thus an overlay can’t tell where it is in the piece of music, or whether the edit screen is
scrolled or zoomed, horizontally or vertically. This means that in many cases, the user
will need to understand and operate the overlay to access the application at a lower
level - eg 'pressing' <tab> to highlight different value fields in a dialog, or
comprehending the current location (in bars, beats and ticks), and entering numbers to
locate the cursor so as to play particular notes.

PERFORMING MUSIC WITH SWITCHES
Another issue for switch users is that conventional music software - even that designed
for disabled use - does not support live performing via switches in a suitably
sophisticated manner to be able to be used to perform with other musicians, although
the MIDIGrid application has been successfully used by Drake tutors for simple live
triggering of music by switches. For this kind of activity, dedicated software such as E–
Scape is really essential [Anderson, 99]. Using E-Scape, a musician can prepare
aspects of the musical performance in advance, and control many other aspects live,
using a number of palettes of material - all via one or more switches.

SUMMARY AND CONCLUSIONS
The examples given hopefully illustrate some of the advantages of a custom system,
with feedback, guidance, clear language, and avoidance of mistakes. The example
activity given was deliberately chosen to be very simple to achieve using the overlay
system, but even so the number of switch presses is at least 50% higher, although this
is not by any means the only measure of difficulty in using the system. If the same
degree of feedback and auditioning that is present in E-Scape (which enables
beginners to choose notes by ear) were demanded of the Cakewalk / overlay system,
then the complexity of operation would vastly increase from that illustrated, and at least
3 times as many switch presses would be needed, although with more work on
developing grids this may be able to be improved on.

However, the key disadvantage of the specialist system is just that it is specialist; most
disabled users would prefer - if they could - to use industry standard software, for a
number of reasons, both practical and psychological. Another factor is the
development power that a commercial company can bring to bear, and the far larger
scale of the customer base. This means it is very difficult for a small specialist
organisation such as the Drake Music Project to be able to develop systems with the
sophistication, power and complexity (at a musical level) of the industry giants.

For those few very advanced switch users who have the tenacity and ability, it is
possible to access all areas of software control, if low-level mouse use is invoked. For
such people, the ability to use the power of standard software is an important pathway
to creativity, and worth the far greater effort and laboriousness involved. The
importance to people of feeling they are 'fitting in' with the world of 'pro' music should
also not be underestimated.
However, the number and precision of the mouse operations required by most music
applications, as well as their complexity of operation, makes this pathway unrealistic
for by far the vast majority of switch users. This makes it desirable to provide a
complementary pathway to using specialist software, to enable some switch users to
try out standard software.

Thus, the challenge is to build a user interface using an overlay system to provide the
same level of high-level control, safety and feedback as in a custom system. This can
enable a switch-user to operate a music application without needing to understand its
operation at a low-level - ie to choose from clearly presented musical operations, as in
E-Scape.
The example overlay grids shown here are an initial attempt to provide such higher-
level control of music software for switch users - ie to obviate them needing to

understand the interface of the underlying music application. As has been illustrated,
no overlay system - however capable - is presently able to provide the same degree of
control flow, economy of operation, guidance and feedback as a system dedicated to
switch control. This, combined with the inherent difficulties of intercommunication of
overlay and application has made it a somewhat complex and laborious task (not
dissimilar to software programming itself) to construct and test these grids.

The results from the work done so far show how much can be done, but the difficulty of
implementation does depend on the target application - which will typically not have
been designed with switch, or overlay, control in mind. The limitations of overlay
systems regarding control flow, context, feedback and communication of state also
provide constraints on the degree of sophistication and flexibility achievable at present.

However, some recommendations - see Appendix 2 - can already be made for
extended functionality for overlay systems to enable the construction of higher-level
user interfaces outlined. It can be seen that the suggested level of functionality is really
demanding that an overlay system take on some of the features of fully-fledged
programming languages, and such a development is certainly an interesting and
challenging project worth pursuing.
Such an overlay system would be a very powerful and important tool in providing
access to desirable and powerful industry standard software for people whose degree
of disability (lower communication and control bandwidth) has hitherto effectively
prevented them realistically being able to operate such systems. It could also be
applied to non-music software.

The Drake Music Project is therefore hoping to extend the sophistication of control via
overlays to more approach that of dedicated systems, and is planning to develop
control systems for a range of industry standard music software. This will also involve
Drake working alongside Sensory Software, to recommend and test possible additional
features which could be incorporated into their new overlay system 'The Grid'. These
may make it easier to build the more complex overlay user interfaces discussed above.

These overlay resources, as well as dedicated systems such as E-Scape, will be made
available on the new Drake Online web-site which aims to facilitate people to make
music whatever their physical disability, and wherever they are. With the planned
developments described, to these aims can be added 'with whatever software they like'
- an ambitious but worthwhile goal.

APPENDIX 1 - EXAMPLES OF SPECIFIC PROBLEMS USING
CAKEWALK WITH OVERLAY SOFTWARE

1. Problems when entering notes - see task A3
Note entry has to be done via 'step entry', which involves specifying the note length in
advance, then entering the pitch from a keyboard (on screen or external music
instrument). A graphic keyboard can be opened, on which notes can be entered by
clicking on them, but also (luckily) using 24 of the keys on the computer keyboard.

a. However to set which octaves the 24 keys are mapped to the possible 88 or more
notes available, two graphic objects have to be dragged under the keyboard using the
mouse.

b. All such entry has to occur within a small uninformative 'Step record' dialog box
which mostly covers the edit screen. But the main problem is that the notes entered
do not appear on the display - and can not be played - until the dialog box is closed via
a 'keep' button. So while entering notes one can not see what is already there, and
cannot hear it, or see where one is - all vital unless one is an advanced composer who
can remember large amounts of musical information.

c. To then enter more notes one has to open the dialog again, but find that the
settings for note length etc made before have been forgotten. To set the note length, a

shortcut can be used, to which an overlay button can be assigned. However, to change
location, the focus must be tabbed to another area of the dialog, and the cursor keys
used a certain number of times. Once at a certain value, the overlay has no way of
knowing where it is, so subsequent changes of value would have to involve tabbing to
other areas then back again (luckily the dialog goes back to the same default value
each time this field is entered). All this means that for the user to enter a note then
change the values for the next note is a complex, long-winded and problematic
process.
In effect this means that the dialog must be opened then closed again for every note or
chord to be entered, unless the user can assume to have good understanding of the
order of fields within the dialog and where they are, and operate within it at a lower-
level.

2. Problems in exiting the keyboard window - see task A5
The user can go back to the 'Keyboard' window and enter some more notes. They can
then select [FINISH] on the note grid, which returns to the Step Record window and
types <Return> which presses the window's 'Keep' button. But a problem can arise if
the user decides to exit the keyboard window, having not recorded any further notes: if
they select [CANCEL -back to main menu], this closes the 'Step Record' window (by
typing <Esc>) which will not 'keep' the recording (to do that we needed to press the
<Return> key).
Thus we really need an additional [Finish entering notes] cell which will type <Return>
(not <Esc>) to press the 'Keep' button before closing. However, if the user were to
select this cell when they had not recorded any notes, then the 'Keep' button will not be
active, and so the Step Record window will not close, although we do jump back to the
main Grid. This then leads to further problems: because the 'Step Record' window is
now still open and active, the shortcuts typed by cells in the main Grid (which assume
the window is not there) have erroneous effects and can leave the user 'stuck' - eg
selecting [Enter notes] again will have the unintended effect of opening a 'Duration'
dialog.
What is needed is for the [FINISH] cell to either press <Return> or <Esc> depending
on whether the user has recorded any notes on the keyboard. This is a good example
of the inherent difficulty in using an overlay, as it cannot know the status of the
controlled application. One answer might be for any [note] cell in the Keyboard grid to
jump to an identical looking 'Keyboard' Grid of notes with two differences: its [note]
cells do not then jump to yet another grid; its [Change Note length] cell jumps to a
variant of the 'Step Record' grid, which 'knows' that at least one note has now been
entered, and whose [FINISH] cell can therefore safely press <Return> to finish
correctly. This needless to say is rather unwieldy, as well as complex and laborious to
set up, and is one area where it is hoped advanced developments within Sensory
Software's new product 'The Grid' may help.

3 Problems entering data in the 'Select by time' dialog
Selecting of notes in Cakewalk is only provided by drawing round notes or clicking on
them with the mouse. As illustrated above (figs 11-12), there is a dialog which lets you
select all notes within a time range, with fields for 'from' and 'to'. A keyboard user can
also type in time values directly, but non-standard Windows controls (described above)
prevent the overlay being able to enter numbers into the fields. Thus the only way for
the overlay to enter values into the dialog is to use the keyboard shortcuts (luckily
available) to increment or decrement the time shown by 1 beat. For a cell in the grid to
be able to enter a specific time, it has to press the increment key a certain number of
times to get to the desired time, but to make sure it always starts from the beginning,
the existing time show when the dialog first opens has to be removed by pressing the
delete key.
Each of these 'from' cells also then jumps to a second grid, which has similar cells to
set the 'to' time. Each of these cells has a similar set of key presses - first <tab> to
move to the second 'to' field, then <delete> to remove the existing time, then an
appropriate number of presses of the increment key, finally followed by <return> to
close the dialog, then a jump back to the main grid. As with most dialogs the controls
to eg play are not active while it is open.

 By this somewhat convoluted series of key presses (eg below), the application could
be persuaded to co-operate, and grids as illustrated were able to set the times to
enable notes to be selected. However, it is only possible to select notes which lie
within the same time span (eg individual notes within a chord) using low-level mouse
control.

Fig. 14 A Hands Off cell definition 'work-around' to set a specific time

There are still several other problems which make the whole 'selecting notes' operation
difficult:
a. the user needs to see and interpret the graphic display to divine which times to
enter, in order to select the desired notes.
b. the time dialog obscures the edit window and refuses to be moved from the
overlay's commands, so notes in the window can't be seen while being selected.
c. there is no visual feedback on which notes are being selected until the time span
has been specified and the dialog closed.

4. Problems when entering chords
To enter chords (notes with the same start time), the button for 'auto step' must be
switched off, as Cakewalk assumes that a user would usually enter chords by pressing
several keys on the graphic keyboard at the same time. But each time the dialog is
entered it has reset itself on. To audition the notes of the chord which have been
entered already along with the new note is very long winded, as we need to exit the
dialog, then go to another overlay grid to move the cursor back to the start of the
chord, then play, then move the cursor back yet again, then go into the dialog again,
then switch off 'auto step again'…
Again, with further work, this problem might be solved by a long-winded set of grids
which repeatedly close the Step Record window, move the cursor and go back into it
again, but this is not straightforward, as there is no way the overlay can remember
what the last step duration was set to by the user, and there is no way of passing
arguments within the overlay. Thus each [duration] cell would have to exit the window
and jump to a different other grid just to set the step cursor back the right amount; then
the user would have to select a single [next chord note] cell, making for a very complex
overlay structure, with dozens of variant grids needed.
A better solution would be to have a cell labelled [Start chord] to switch on a key lock,
before selecting several cells for chord notes, then finally selecting another cell to
release the held keys.

5. Other general overlay problems
a. There is a limit to the length of text which can be displayed in a grid (as a title), so
the presentation of instructions or prompting is limited.
b. As each grid has fixed cells with fixed values, a grid can have cells which allow a
user to select inappropriate values, eg to specify a 'from' time greater than the 'to' time.
c. Cells have to be in a grid-like arrangement, which limits the ability to present a
visually appropriate design - eg a piano keyboard.

APPENDIX 2 - INITIAL RECOMMENDATIONS FOR FUNCTIONALITY
OF OVERLAY SYSTEMS
These initial recommendations would help solve some of the problems encountered
using overlays to build higher-level user interfaces. Some may prove problematic or
impractical, or may need refining, and more will undoubtedly arise during the project.

1. Each overlay grid should be able to contain remembered state (similar to OOPS

instance variables), and be able to pass and be passed parameters or arguments
from other grids when jumped to or from, or from cells when activated. This will
enable a grid to eg know and remember how many times a switch press has been
repeated, or which cell was last selected. Another example would be to launch a
grid forming a menu of numbers which can be specified dynamically at launch.
This structure and parameter passing is likely to be the key to implementing some
of the ideas below.

2. Grids should be able to take actions immediately on launch in response to
parameters passed from the calling grid. Such structure would for example make
eg, the ability to jump to 'previous grid but two' easy to implement.

3. Conditional jumping to different grids, depending on recent actions in the grid. This
will depend in the provision of remembered states in grids as above.

4. Cell actions should be able to be nested - so that a complex cell action can be set
up by calling other cells already defined. 'The Grid' will address this using 'Scripts'.

5. Each grid should be able to have (lengthy) text at the top or bottom, which can
automatically speak on launch of the grid - to act as an instruction, question or
prompt.

6. Text should be dynamically assignable when a grid is launched, passed as
parameters from the calling cell.

7. For places where there are only a few options, a grid should be able to operate
with a single row or column (to act as a conventional menu), and only require a
single switch press to select a cell.

8. Each grid should remember which grid it was called (jumped to) from, as well as
grids it then jumps to. At present, loops can be formed with two grids jumping back
to each other.

9. Cells need to be arrange-able in groups within a grid, with the possibility of empty
space between, and not restricted to a grid-like arrangement - eg which could
enable a proper looking piano keyboard to be constructed.

10. Cells should be able to send MIDI messages, to trigger music synthesisers - eg
useful when scanning a grid of notes. These again will need to have parameters or
state passed from the grid or cell, so that, for example, a grid can send on the
correct MIDI channel depending on which track in the application has been
selected.

11. Grids should respond to incoming MIDI messages, so they can be controlled by
MIDI instruments. Many users like to only have a single controller in front of them,
and would like to press notes on a MIDI keyboard to scroll and select, for example.

REFERENCES
Anderson, T. M. and Smith, C. (1996). ‘Composability’: widening participation in music
making for people with disabilities via music software and controller solutions’. Proc.
ACM Conference on Assistive Technologies, Vancouver.

Anderson, T.M. (1997). Making music with Computers. Ability 20: 9-15.

Anderson, T.M. (1999). Using Music Performance Software with Flexible Control
Interfaces for Live Performance by Severely Disabled Musicians. Proc. EuroMicro
25(Vol.2): 20-27.

